Professional Certificate of Competency in Substation Design (Control, Protection and Facility Planning)

EIT Engineering Institute of Technology
  • Info on Application
  • 3 Months
  • Accredited Certification
  • London

In this interactive 3 month LIVE ONLINE course, you will learn how to:Perform the design of substation earthing so as to ensure safety of personnel and equipment under all conditions. Overview
Substations are the key assets in any power system and serve as important nodes in a transmission and distribution network. Substations thus handle multiple voltages in a given location and link two or more systems of different voltages. In the first part of this two-part certificate series, the participants are given a thorough understanding of the basic principles of substation design, configuration of a substation, the specification/selection of equipment based on a selected configuration, conducting system studies to verify/correct the initial assumptions and to plan the layout of the substation.

In this part, the focus will be on the other subsystems that perform essential functions in substations. These include earthing/grounding, lightning protection of outdoor equipment and substation buildings, power system protection, control and interlocking equipment including the auxiliary power sources and various switchyard facilities such as foundation, structures, cable routing, lighting, fire protection and surveillance equipment.

Earthing of a HV switchyard requires careful design as it has a direct bearing on safety. The design approach to switchyards will be discussed and the basic methods of calculation will be outlined. Lightning is a common occurrence which poses a threat to substation equipment and supply reliability by causing overvoltage surges resulting in insulation failure or spark over. While lightning cannot be prevented, its effects can be minimised by proper lightning and surge protection measures.

Any electrical equipment is susceptible to insulation failures. Protection against such failures and the resulting short circuits is a vital need in power systems. The various protection options available to the designer and the protection of busbars, transformers and substation feeders will be discussed in two parts. Another essential system is the control of switchyard equipment and the auxiliary power supply required for control. Ac auxiliary power is generally used for operation of isolators/disconnectors, the operating mechanism of circuit breakers and for substation lighting. Essential functions are powered through dc supply backed with batteries for reliability. This includes control, annunciation and protection functions, breaker close and trip commands and in some cases emergency lightning.

A switchyard has to be properly planned by preparing the site, measuring earth resistivity required for earthing design/optimisation, earth work, foundations, cable trenches inside the switchyard, draining arrangements etc. These aspects will be covered in detail in a separate module. The last module will discuss about gas insulated switchgear as an alternative to outdoor open type switchyards.

All the above topics will be dealt in this course using a simple step-by-step approach through real life examples. The basic design approach and calculations will be performed by the students to clearly understand the concepts that are being taught.

There will be 12 modules covered in 3 months to give the students adequate time to try and apply the concepts learnt in the modules in the context of their workplace and discuss them with the course facilitator. The contents and sequence of the modules can be seen in the course outline.

EIT Engineering Institute of Technology

London,

Suite 18,

Fitzroy House,

Lynwood Drive,

Worcester Park,

Surrey KT4 7AT,

Tel: 44 208 335 4014

Web: https://www.eit.edu.au/cms/